Direct measurement of molecular mobility in actively deformed polymer glasses.
نویسندگان
چکیده
When sufficient force is applied to a glassy polymer, it begins to deform through movement of the polymer chains. We used an optical photobleaching technique to quantitatively measure changes in molecular mobility during the active deformation of a polymer glass [poly(methyl methacrylate)]. Segmental mobility increases by up to a factor of 1000 during uniaxial tensile creep. Although the Eyring model can describe the increase in mobility at low stress, it fails to describe mobility after flow onset. In this regime, mobility is strongly accelerated and the distribution of relaxation times narrows substantially, indicating a more homogeneous ensemble of local environments. At even larger stresses, in the strain-hardening regime, mobility decreases with increasing stress. Consistent with the view that stress-induced mobility allows plastic flow in polymer glasses, we observed a strong correlation between strain rate and segmental mobility during creep.
منابع مشابه
Simulation of Plastic Deformation in Glassy Polymers: Atomistic and Mesoscale Approaches
The mechanism of deformation in glasses is very different from that of crystals, even though their general behavior is very similar. In this study, we investigated the deformation of polycarbonate on the atomistic scale with molecular dynamics and on the continuum scale with a new simulation approach. The results indicated that high atomic/segmental mobility and low local density enabled the fo...
متن کاملLuminescence Properties of TeO2-LiF-Gd2O3 Glasses
In this work, the structural properties and spectroscopic behavior 80 mol.%TeO2-20mol.%LiF glasses which were doped with 0. 05, 0. 2 mole% Gd2O3 have been studied. It was shown that, by increasing the amount of Gd2O3 the glass stability was decreased. The PL emissions at 431nm and 627nm wavelengths were distinguished by 320nm excitation. The FT-IR analysis showed deformed TeO4 groups in these ...
متن کاملDeformation of glassy polycarbonate and polystyrene: the influence of chemical structure and local environment
Understanding the mechanism of deformation is very important in various applications. Although the stress–strain behavior of crystals and glasses are similar, the mechanism of deformation is very different. We used molecular dynamics to study polycarbonate and polystyrene under constant external loads. The results indicate that high atomic/segmental mobility and low local density enable the for...
متن کاملElectrical Resistivity Measurement of the Molten Cordierite Glass Using Two-wire method
Electrical resistivity (ER) is a main parameter in the melting processes of glasses. However, its measurement is difficult at high temperatures. In this study the electrical resistivity of different cordierite glass samples in the molten state was measured in the temperature range of 1100˚C to 1550 ˚C using the two-wire method. It was attempted to decrease the electrical resistivity of the glas...
متن کاملTransport and Stability of Laser-Deposited Amorphous Polymer Nanoglobules
We characterized the transport, i.e., time-of-flight, and nanoscale thermal properties of amorphous polymer nanoglobules fabricated via a laser-deposition technique, Matrix-Assisted Pulsed Laser Deposition (MAPLE). Here, we report the first experimental measurement of the velocity of polymer during MAPLE processing and its connection to nanostructured film formation. A nanoscale dilatometry tec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Science
دوره 323 5911 شماره
صفحات -
تاریخ انتشار 2009